Clustering Distortions from Lyman-alpha Radiative Transfer

Chris Byrohl Collaborators: Christoph Behrens, Shun Saito, Jens Niemeyer

Max Planck Institute for Astrophysics, Garching

Tokyo, March 23, 2018

Motivation

- Ly-α: Prominent emission line for high-z galaxies
 Opportunity:
- Low redshifts (2<z<3.5): Cosmology with HETDEX
- High redshifts: Complementary reionization probe **Theoretical Challenge**:
- Resonant line with high optical depths
 - \rightarrow Complex radiative transfer \rightarrow Numerical simulations

<u>RT Distortion #1</u>: arXiv:1710.06171 (C. Behrens, **CB** et al.) **<u>RT Distortion #2</u>**: in prep (**CB**, S. Saito et al.)

Reminder: Redshift Space Distortions

$$\vec{s} = \vec{r} + \frac{\vec{v}\cdot\hat{\pi}}{aH(z)}\hat{\pi}$$

Kaiser effect:Squashing due to coherent
motion on large scalesFingers-of-God effect:Elongation due to random
motion on small scales

Radiative Transfer Distortions

Classic Redshift Space Distortions

Kaiser effect

Squashing due to coherent *motion* on large scales

Fingers-of-God effect

Elongation due to random motion on small scales

Radiative Transfer Distortions

RT Distortion #1

Elongation due to coherent attenuation on large scales **RT Distortion #2**

Elongation due to random spectrum on small scales

Numerical Simulations

RT Distortion #1

Elongation due to due coherent *attenuation* on large scales

RT Distortion #2

Elongation due to random *spectrum* on small scales

Numerical Simulations – Illustris

- Set of cosmological simulations run with AREPO for DM+BM physics.
- Public snapshots/halo catalogs
- Voronoi \rightarrow Octree for RT simulation

lllustris Simulation L=75 Mpc/h / $\Delta_{\rm res}\approx 1~{\rm ckpc}$ / $m_{\rm BM/DM}=(12.6/62.6)\cdot 10^5 M_{\odot}$

Numerical Simulations – Radiative Transfer

- Monte Carlo Approach
- Spawn weighted photons according to local *luminosity* and *spectrum*
- At scatterings, compute attenuated luminosity reaching observer.

Numerical Simulations – Emitter Assumptions

- Assign to luminosity and spectrum to (sub)halos:
 - All emission in sub(halo) center
 - $-L = \frac{SFR}{M_{\odot}/yr} \cdot 10^{42} \text{ erg/s}$
 - Gaussian with $\sigma_{\rm int} \propto T_{\rm vir}^{1/2}$
 - Cut out ISM, no dust, no escape fraction...

Numerical Simulations – Visual Results

Numerical Simulations

RT Distortion #1

Elongation due to due coherent *attenuation* on large scales

RT Distortion #2

Elongation due to random *spectrum* on small scales

RT Distortion #1 – Introduction

Theory

• (Zheng et al., 2011) find anisotropic clustering due to a Selection Effect

Observation

- (Croft et al., 2016) observe similar clustering effect
- Problem for Lyα surveys, such as HETDEX?

RT Distortion #1 – Explanation

• Attenuation correlates with:

Density (isotropic)

Velocity gradient (anisotropic)

Resulting clustering signal:
 Bias

Clustering ➤ along line of sight Perpendicular

RT Distortion #1 – Results: Mock Observations

RT Distortion #1 – Results: LSS correlations

 Define the observed fraction as

 $\varepsilon = L_{\rm app}/L_{\rm int}$

• Finding no correlation with LSS \rightarrow no clustering distortion

RT Distortion #1 – Results: LSS correlations

- Try to reproduce ZZ10/11:
 - Lower resolution
 - Adjust emitter model

RT Distortion #1 – Results: Clustering Signal

Resolution independent at lower redshifts

• Reproduce prior findings, but numerical effect, nevertheless physical implications.

RT Distortion #1 – Further Explanation

RT Distortion #1 – Further Explanation

RT Distortion #1 – Summary

- Anisotropic RT distortion due to velocity gradient's impact on attenuation on large scales.
- For given setup, effect shown to be numerical.
- Does not exist for 'low'-z \rightarrow good for HETDEX, etc.
- Existence at 'high'-z depends on small-scale spectral modeling.

Numerical Simulations

RT Distortion #1

Elongation due to due coherent *attenuation* on large scales

RT Distortion #2

Elongation due to random *spectrum* on small scales

RT Distortion #2 – Introduction

- Until now only concerned with flux, not spectra.
- Intensity maps show a significant smearing along line of sight due frequency diffusion.

RT Distortion #2 – Introduction

• For simplicity, identify LAE's position with its global peak

RT Distortion #2 – Peak Distribution

• Contributions are uncorrelated

$$\vec{s} = \vec{r} + \frac{\vec{v} \cdot \hat{\pi}}{aH(z)} \hat{\pi}$$

RT Distortion #2 – Peak Distribution

• Dominating blue peak at low redshifts inconsistent with observations.

- Need to improve small-scale modeling
- Short-term hack: Use red peaks only (*Appendix*)

RT Distortion #2 – Clustering Signal

• Radiative transfer 'velocity' dominates over grav. part

RT Distortion #2 – Result: Clustering Model

• Modeling with Gaussian damping fails: $D_{\text{FoG}} = \exp\left[-k^2 \mu^2 f^2 \sigma_{v_{\text{RT}}}^2\right]$... and so does a cumulant expansion of the PDF

 \rightarrow analytic PDF for v_{RT} needed

 \rightarrow can't stay agnostic concerning underlying physics

RT Distortion #2 – Summary

- Anisotropic RT distortion due to small-scale spectral variations.
- Standard deviations roughly 100-200km/s over redshift range from 2 to 6.
- However, complex damping factor to due PDF's shape.
- Just as distortion #1 depends on the small-scale spectral modeling

Overall Summary

• Run radiative transfer simulations to construct mock observations quantifying clustering distortions.

RT Distortion #1

Elongation due to coherent *attenuation* on large scales

- Prior findings numerical artifact
- No indication of effect at 4≤z
 → Good news for HETDEX!

RT Distortion #2

Elongation due to random spectrum on small scales

- Significant small-scale distortion
- Modeling tricky
- Need to improve on spectral input.

Appendix

RT Distortion #2 – Result: Conservative Spectra

RT Distortion #2 – Result: Conservative Spectra

RT Distortion #2 – Result: Conservative Spectra

