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Motivation
● Ly-α: Prominent emission line for high-z galaxies

Opportunity:
● Low redshifts (2<z<3.5): Cosmology with HETDEX
● High redshifts: Complementary reionization probe

Theoretical Challenge:
● Resonant line with high optical depths

→Complex radiative transfer → Numerical simulations

RT Distortion #1: arXiv:1710.06171 (C. Behrens, CB et al.)
RT Distortion #2: in prep (CB, S. Saito et al.)



  

Reminder: Redshift Space Distortions

Kaiser effect:    Squashing due to coherent
   motion on large scales

Fingers-of-God effect: Elongation due to random
   motion on small scales

(Reid et al., 2012)



  

Radiative Transfer Distortions

Classic Redshift 
Space Distortions

Kaiser effect
Squashing due to coherent
motion on large scales

Fingers-of-God effect
Elongation due to random
motion on small scales

Radiative Transfer
Distortions

RT Distortion #1
Elongation due to coherent
attenuation on large scales

RT Distortion #2
Elongation due to random
spectrum on small scales



  

RT Distortion #1
Elongation due to due coherent
attenuation on large scales

RT Distortion #2
Elongation due to random
spectrum on small scales

Numerical SimulationsNumerical Simulations



  

Numerical Simulations – Illustris
● Set of cosmological simulations run 

with AREPO for DM+BM physics.
● Public snapshots/halo catalogs
● Voronoi  Octree for RT simulation→

Illustris Simulation



  

Numerical Simulations – Radiative Transfer
● Monte Carlo Approach
● Spawn weighted photons 

according to local luminosity 
and spectrum

● At scatterings, compute 
attenuated luminosity 
reaching observer.



  

Numerical Simulations – Emitter Assumptions
● Assign to luminosity and spectrum to (sub)halos:

– All emission in sub(halo) center
–

– Gaussian with
– Cut out ISM, no dust, no escape fraction...



  

Numerical Simulations – Visual Results



  

RT Distortion #1
Elongation due to due coherent
attenuation on large scales

RT Distortion #2
Elongation due to random
spectrum on small scales

Numerical Simulations



  

RT Distortion #1 – Introduction
Theory

● (Zheng et al., 2011) find 
anisotropic clustering due to a 
Selection Effect

Observation
● (Croft et al., 2016) observe 

similar clustering effect 
● Problem for Ly  surveys, α

such as HETDEX?



  

RT Distortion #1 – Explanation
● Attenuation correlates with:

Density (isotropic)

Velocity gradient (anisotropic)

● Resulting clustering signal:

Bias ⬊

Clustering  along line of sight⬊

                           ⬈ perpendicular
(Zheng et al., 2011)



  

RT Distortion #1 – Results: Mock Observations



  

RT Distortion #1 – Results: LSS correlations
● Define the observed fraction 

as

● Finding no correlation with 
LSS  no clustering distortion→



  

RT Distortion #1 – Results: LSS correlations

● Try to reproduce ZZ10/11:

– Lower resolution
– Adjust emitter model



  

RT Distortion #1 – Results: Clustering Signal

● Reproduce prior findings, but numerical effect,
nevertheless physical implications.

● z = 5.9
● Resolution 

independent at 
lower redshifts



  

RT Distortion #1 – Further Explanation

0

ISM

0

ISM
CGM

0

ISM
CGM
IGM

● Attenuated fuu frequency dependend
 → Resolving the CGM scale matters

     … and need good modeling of ISM



  

RT Distortion #1 – Further Explanation



  

RT Distortion #1 – Summary
● Anisotropic RT distortion due to velocity gradient’s 

impact on attenuation on large scales.
● For given setup, effect shown to be numerical.
● Does not euist for ‘low’-z  good for HETDEX, etc.→
● Euistence at ‘high’-z depends on small-scale spectral 

modeling.



  

RT Distortion #1
Elongation due to due coherent
attenuation on large scales

RT Distortion #2
Elongation due to random
spectrum on small scales

Numerical Simulations



  

RT Distortion #2 – Introduction

● Until now only concerned with 
fuu, not spectra.

● Intensity maps show a significant 
smearing along line of sight due 
frequency diffusion.



  

RT Distortion #2 – Introduction
● For simplicity, identify LAE’s position with its global peak

z=3.0



  

RT Distortion #2 – Peak Distribution

● Velocity decomposition:

● Contributions are uncorrelated



  

RT Distortion #2 – Peak Distribution
● Dominating blue peak at low redshifts inconsistent with 

observations.

● Need to improve small-scale 
modeling

● Short-term hack: Use red peaks 
only (Appendix)



  

RT Distortion #2 – Clustering Signal

● Radiative transfer ‘velocity’ dominates over grav. part



  

RT Distortion #2 – Result: Clustering Model

● Modeling with Gaussian damping fails:
… and so does a cumulant eupansion of the PDF

 → analytic PDF for             needed 

     → can’t stay agnostic concerning underlying physics  



  

RT Distortion #2 – Summary
● Anisotropic RT distortion due to small-scale spectral 

variations. 
● Standard deviations roughly 100-200km/s over redshift 

range from 2 to 6.
● However, compleu damping factor to due PDF’s shape.
● Just as distortion #1 depends on the small-scale spectral 

modeling 



  

Overall Summary
● Run radiative transfer simulations to construct mock 

observations quantifying clustering distortions.

RT Distortion #1
Elongation due to coherent
attenuation on large scales

• Prior findings numerical artifact
• No indication of effect at 4≤z

 → Good news for HETDEX!

RT Distortion #2
Elongation due to random
spectrum on small scales

• Significant small-scale distortion
• Modeling tricky

● Need to improve on spectral input.



  

Appendix



  

RT Distortion #2 – Result: Conservative Spectra



  

RT Distortion #2 – Result: Conservative Spectra



  

RT Distortion #2 – Result: Conservative Spectra
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