Theoretical Challenge:
* Resonant line and high optical depths
→Complex radiative transfer →numerical simulations
.blockquote[Selection Effect Analysis:
arXiv:1710.06171 (C. Behrens,
CB et al.)]
---
# Reminder: Redshift Space Distortions
.left-column[
$${\color{red}\vec{s}}={\color{blue}\vec{r}}+\frac{\vec{v}\cdot\hat{z}}{a H(z)}{\color{green}\hat{z}}$$
]
.right-column-definitions[
$$ \begin{align} {\color{red}\vec{s}}&:\text{redshift space} \\\\
{\color{blue}{\vec{r}}}&: \text{real space} \\\\
{\color{green}{\hat{z}}}&: \text{line of sight direction} \end{align} $$
]
Fingers-of-God effect:
Elongation due to random motion on small scales
Kaiser effect:
Squashing due to coherent motion on large scales
---
# RT Clustering
## Theory
→ (Zheng et al., 2011)
find anisotropic clustering due to a Radiative Transfer Effect.
## Observation
→ (Croft et al., 2016)
observe clustering consistent with (Zheng et al., 2011).
→ Problem for HETDEX?
---
# RT Clustering
Radiative Transfer introduces selection effects:
- density (isotropic)
- velocity gradient (anisotropic)
- ⬊ Bias
- ⬊Clustering along the line of sight
---
# Methodology
.left-column[
# +
]
.right-column[
]
|
Zheng et al. 2011
|
Behrens et al. 2017
|
Resolution
|
30.4 pkpc |
0.5 pkpc |
Redshifts
|
z=5.7 only |
z=2.01,3.01,4.01,5.85 |
---
# Results: Some Impressions
---
# Results: Clustering
* Can reproduce RT effect for artificially lowered resolution.
* **IGM** interaction crucially depends on **CGM** processes.
---
# Conclusions/Future Prospects
.finalslide[
- High resolution **numerical simulations** necessary to understand
**Ly`\(\alpha\)` complex radiative transfer**.
- Prior publication **overestimated Selection Effects**.
- **Tool for further studies**,
- e.g. Redshift space, Intensity mapping.
]